Study on the Effect of Fracturing Pump Start and Stop on Tubing Fluid-Structure Interaction Vibration in HPHT Wells via MOC

Author:

Cui LuORCID,Qiao Fanfan,Li Meng,Xiao Yiming,Cheng JiaruiORCID

Abstract

The processes of HTHP well fracturing, oil drive, and gas recovery are accompanied by the non-stationary flow of medium in the tubing, which may lead to periodic vibration and cause the failure and fatigue of the tubing, thread leakage, and bending deformation. In this paper, a fluid–structure interaction model with 4-equation was established, which considered the unsteady flow of fluid and the motion state of tubing during the periodic injection, pump start, and shutdown of fluid in the tubing. Further, the discrete solution of MOC was used to obtain the variation of fluid flow rate and pressure, tubing vibration rate, frequency, and additional stress with time. The resonance construction parameters corresponding to different tubing diameters were analyzed by discussing the effects of different start and shutdown times as well as pressure on the tubing vibration parameters. The results show that under the periodic injection condition, increasing the tubing diameter or start inside pressure would lead to a sharp increase in the axial additional stress of the tubing generated by fluid–structure interaction, which is not conducive to the safety protection of the tubing. When the pump was shutdown, excessively short operation times and high pressure in the tubing would lead to excessive transient loads in addition to resonance, which would cause damage to the pipeline. Finally, corresponding to the above analysis results, this paper proposes the optimal injection parameters to avoid the generation of resonance, which provides a theoretical basis and reference range for the safe service conditions of the tubing.

Funder

National Natural Science Foundation of China

working group The Youth Innovation Team of Shaanxi Universities and Xi’an Key Laboratory of Wellbore Integrity Evaluation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference30 articles.

1. Yang, Y., Fan, J., Liu, D., and Ma, F. (2021). Modern Management based on Big Data II and Machine Learning and Intelligent Systems III: Proceedings of the MMBD 2021 and MLIS 2021, Online, 8–11 November 2021. Ed., IOS Press.

2. Real-time risk analysis method for diagnosis and warning of offshore downhole drilling incident;Wu;J. Loss Prev. Process Ind.,2019

3. Failure evaluations for packers in multistage fracturing technology with immobile strings;Wen;J. Pet. Sci. Eng.,2021

4. Research on the influence of production fluctuation of high-production gas well on service security of tubing string;Zhang;Oil Gas Sci. Technol.,2021

5. Experimental investigation of transients-induced fluid structure interaction in a pipeline with multiple-axial supports;Keramat;J. Fluids Struct.,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3