Two-Stage Convolutional Neural Networks for Diagnosing the Severity of Alternaria Leaf Blotch Disease of the Apple Tree

Author:

Liu Bo-Yuan,Fan Ke-Jun,Su Wen-HaoORCID,Peng Yankun

Abstract

In many parts of the world, apple trees suffer from severe foliar damage each year due to infection of Alternaria blotch (Alternaria alternata f. sp. Mali), resulting in serious economic losses to growers. Traditional methods for disease detection and severity classification mostly rely on manual labor, which is slow, labor-intensive and highly subjective. There is an urgent need to develop an effective protocol to rapidly and accurately evaluate disease severity. In this study, DeeplabV3+, PSPNet and UNet were used to assess the severity of apple Alternaria leaf blotch. For identifications of leaves and disease areas, the dataset with a total of 5382 samples was randomly split into 74% (4004 samples) for model training, 9% (494 samples) for validation, 8% (444 samples) for testing and 8% (440 samples) for overall testing. Apple leaves were first segmented from complex backgrounds using the deep-learning algorithms with different backbones. Then, the recognition of disease areas was performed on the segmented leaves. The results showed that the PSPNet model with MobileNetV2 backbone exhibited the highest performance in leaf segmentation, with precision, recall and MIoU values of 99.15%, 99.26% and 98.42%, respectively. The UNet model with VGG backbone performed the best in disease-area prediction, with a precision of 95.84%, a recall of 95.54% and a MIoU value of 92.05%. The ratio of disease area to leaf area was calculated to assess the disease severity. The results showed that the average accuracy for severity classification was 96.41%. Moreover, both the correlation coefficient and the consistency correlation coefficient were 0.992, indicating a high agreement between the reference values and the value that the research predicted. This study proves the feasibility of rapid estimation of the severity of apple Alternaria leaf blotch, which will provide technical support for precise application of pesticides.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3