Generation and Optimization of Spectral Cluster Maps to Enable Data Fusion of CaSSIS and CRISM Datasets

Author:

Fernandes Michael,Pletl Alexander,Thomas Nicolas,Rossi Angelo PioORCID,Elser Benedikt

Abstract

Four-band color imaging of the Martian surface using the Color and Stereo Surface Imaging System (CaSSIS) onboard the European Space Agency’s ExoMars Trace Gas Orbiter exhibits a high color diversity in specific regions. Not only is the correlation of color diversity maps with local morphological properties desirable, but mineralogical interpretation of the observations is also of great interest. The relatively high spatial resolution of CaSSIS data mitigates its low spectral resolution. In this paper, we combine the broad-band imaging of the surface of Mars, acquired by CaSSIS with hyperspectral data from the Compact Reconnaissance Imaging Spectrometer (CRISM) onboard NASA’s Mars Reconnaissance Orbiter to achieve a fusion of both datasets. We achieve this using dimensionality reduction and data clustering of the high dimensional datasets from CRISM. In the presented research, CRISM data from the Coprates Chasma region of Mars are tested with different machine learning methods and compared for robustness. With the help of a suitable metric, the best method is selected and, in a further step, an optimal cluster number is determined. To validate the methods, the so-called “summary products” derived from the hyperspectral data are used to correlate each cluster with its mineralogical properties. We restrict the analysis to the visible range in order to match the generated clusters to the CaSSIS band information in the range of 436–1100 nm. In the machine learning community, the so-called UMAP method for dimensionality reduction has recently gained attention because of its speed compared to the already established t-SNE. The results of this analysis also show that this method in combination with the simple K-Means outperforms comparable methods in its efficiency and speed. The cluster size obtained is between three and six clusters. Correlating the spectral cluster maps with the given summary products from CRISM shows that four bands, and especially the NIR bands and VIS albedo, are sufficient to discriminate most of these clusters. This demonstrates that features in the four-band CaSSIS images can provide robust mineralogical information, despite the limited spectral information using semi-automatic processing.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3