Engineering of Nanostructured WO3 Powders for Asymmetric Supercapacitors

Author:

Mineo GiacomettaORCID,Scuderi MarioORCID,Pezzotti Escobar GianniORCID,Mirabella Salvo,Bruno ElenaORCID

Abstract

Transition metal oxide nanostructures are promising materials for energy storage devices, exploiting electrochemical reactions at nanometer solid–liquid interface. Herein, WO3 nanorods and hierarchical urchin-like nanostructures were obtained by hydrothermal method and calcination processes. The morphology and crystal phase of WO3 nanostructures were investigated by scanning and transmission electron microscopy (SEM and TEM) and X-ray diffraction (XRD), while energy storage performances of WO3 nanostructures-based electrodes were evaluated by cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD) tests. Promising values of specific capacitance (632 F/g at 5 mV/s and 466 F/g at 0.5 A/g) are obtained when pure hexagonal crystal phase WO3 hierarchical urchin-like nanostructures are used. A detailed modeling is given of surface and diffusion-controlled mechanisms in the energy storage process. An asymmetric supercapacitor has also been realized by using WO3 urchin-like nanostructures and a graphene paper electrode, revealing the highest energy density (90 W × h/kg) at a power density of 90 W × kg−1 and the highest power density (9000 W/kg) at an energy density of 18 W × h/kg. The presented correlation among physical features and electrochemical performances of WO3 nanostructures provides a solid base for further developing energy storage devices based on transition metal oxides.

Funder

NaTI4Smart

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Reference35 articles.

1. Recent Advancements in Supercapacitor Technology;Nano Energy,2018

2. Brousse, T., Bélanger, D., Chiba, K., Egashira, M., Favier, F., Long, J., Miller, J.R., Morita, M., Naoi, K., and Simon, P. (2019). Springer Handbook of Electrochemical Energy, Springer.

3. Puzzles and Confusions in Supercapacitor and Battery: Theory and Solutions;J. Power Sources,2018

4. Investigating the Charge-Discharge Behaviour of Ni(OH)2 Nanowalls;Appl. Surf. Sci.,2020

5. Ni(OH)2@Ni Core-Shell Nanochains as Low-Cost High-Rate Performance Electrode for Energy Storage Applications;Sci. Rep.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3