Constructing a Lightweight Key-Value Store Based on the Windows Native Features

Author:

Kwon Hyuk-YoonORCID

Abstract

In this paper, we propose a method to construct a lightweight key-value store based on the Windows native features. The main idea is providing a thin wrapper for the key-value store on top of a built-in storage in Windows, called Windows registry. First, we define a mapping of the components in the key-value store onto the components in the Windows registry. Then, we present a hash-based multi-level registry index so as to distribute the key-value data balanced and to efficiently access them. Third, we implement basic operations of the key-value store (i.e., Get, Put, and Delete) by manipulating the Windows registry using the Windows native APIs. We call the proposed key-value store WR-Store. Finally, we propose an efficient ETL (Extract-Transform-Load) method to migrate data stored in WR-Store into any other environments that support existing key-value stores. Because the performance of the Windows registry has not been studied much, we perform the empirical study to understand the characteristics of WR-Store, and then, tune the performance of WR-Store to find the best parameter setting. Through extensive experiments using synthetic and real data sets, we show that the performance of WR-Store is comparable to or even better than the state-of-the-art systems (i.e., RocksDB, BerkeleyDB, and LevelDB). Especially, we show the scalability of WR-Store. That is, WR-Store becomes much more efficient than the other key-value stores as the size of data set increases. In addition, we show that the performance of WR-Store is maintained even in the case of intensive registry workloads where 1000 processes accessing to the registry actively are concurrently running.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference28 articles.

1. Redishttp://redis.io

2. LevelDBhttps://github.com/google/leveldb

3. RocksDB: A Persistent Key-Value Store for Fast Storage Environmentshttps://rocksdb.org

4. Oracle Berkeley DBhttps://www.oracle.com/database/technologies/related/berkeleydb.html

5. Memcached: A Distributed Memory Object Caching Systemhttps://memcached.org

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3