Thermal Properties and Drying Shrinkage Performance of Palm Kernel Shell Ash and Rice Husk Ash-Based Geopolymer Concrete

Author:

Abdullah Mohd Na’im1ORCID,Mustapha Faizal1,Yusof Nurul ‘Izzati1,Khan Tabrej2,Sebaey Tamer A.23ORCID

Affiliation:

1. Department of Aerospace Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Malaysia

2. Engineering Management Department, College of Engineering, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia

3. Mechanical Design and Production Department, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt

Abstract

This study aims to develop suitable formulations of geopolymer concrete (GPC) by varying the percentages of the geopolymer with aggregates and evaluating the performances in thermal and mechanical properties of palm kernel shell ash (PKSA)-GPC compared to rice husk ash (RHA)-GPC and ordinary Portland cement concrete (OPCC). Preliminary tests were conducted to select the best mix design ratios before casting the specimens. Then, the performance of the PKSA-GPC, RHA-GPC and OPCC specimens was evaluated based on their thermal performance and drying shrinkage. The mix designs of PKSA-GPC 70:30, PKSA-GPC 60:40, PKSA-GPC 50:50 and PKSA-GPC 66.6:33.3 were found to produce an acceptable consistency, rheological and thixotropic behaviour for the development of the GPC. PKSA-GPC showed a better thermal performance than the RHA-GPC and OPCC due to their strong and dense intumescent layers and slow temperature increment upon exposure to a high flame temperature from ambient temperature to 169 °C. The low molar ratio of the Si/Al present in the PKSA-GPC created a thermally stable intumescent layer. In the drying shrinkage test, PKSA-GPC 60:40 and RHA-GPC 60:40 shared an equal drying shrinkage performance (5.040%) compared to the OPCC (8.996%). It was observed that microcrack formation could significantly contribute to the high shrinkage in the PKSA-GPC 50:50 and RHA-GPC 70:30 specimens. The findings of this study show that PKSA could be incorporated into GPC as a fire-retardant material due to its capability of prolonging the spread of fire upon ignition and acting as an alternative to the conventional OPCC.

Funder

Engineering Management Department, College of Engineering, Prince Sultan University, Saudi Arabia

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3