Ecological Evaluation of Sponge City Landscape Design Based on Aquatic Plants Application

Author:

Jiang Dan,Hua Rui,Shao Jian

Abstract

Urbanization increases the impervious surface of land and disrupts the hydrological cycle of urban water resources. Optimum landscape design based on climatic and geographical factors can reduce the destructive effects of urban development on surface and subsurface flows. The construction of a sponge city is an essential step towards achieving this structure. Aquatic plants are the most important component of the ecological regeneration of urban landscapes. The land cover changes caused by aquatic plants reduce the speed of water and increase the penetration of runoff into the porous environment. In addition, not only can the use of aquatic plants as the main component of water saving for ecological restoration control water erosion, but it can also have a positive effect on landscape architecture. Therefore, the aim of this study was to develop a multi-objective urban landscape design model based on the use of aquatic plants. Moreover, the limitations of improving the urban ecosystem with aquatic plants were analyzed based on the theory of ecological restoration in a sponge city. The required area for the cultivation of these plants was calculated according to the flood return periods and the two objective functions of land slope and runoff rate. The results show that surface runoff decreased by 15% and that rainfall and flood decreased by 21% for a 50-year return period.

Funder

Ministry of Education "Cultural Gene Genealogy and Digital Protection of Traditional Residential Buildings Form in Xinjiang"

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3