The Influence of Temporal Disturbances in EKF Calculations on the Achieved Parameters of Flight Control and Stabilization of UAVs

Author:

Szczepaniak Jędrzej12ORCID,Szlachetko Bogusław12ORCID,Lower Michał23ORCID

Affiliation:

1. Faculty of Electronics, Photonics and Microsystems, Wroclaw University of Science and Technology, 50-370 Wrocław, Poland

2. Sky Tronic Sp. z o.o., ul. Zduńska 10, 51-180 Wrocław, Poland

3. Faculty of Information and Communication Technology, Wroclaw University of Science and Technology, 50-370 Wrocław, Poland

Abstract

This article investigates the causes of occasional flight instability observed in Unmanned Aerial Vehicles (UAVs). The issue manifests as unexpected oscillations that can lead to emergency landings. The analysis focuses on delays in the Extended Kalman Filter (EKF) algorithm used to estimate the drone’s attitude, position, and velocity. These delays disrupt the flight stabilization process. The research identifies two potential causes for the delays. First cause is magnetic field distrurbances created by UAV motors and external magnetic fields (e.g., power lines) that can interfere with magnetometer readings, leading to extended EKF calculations. Second cause is EKF fusion step implementation of the PX4-ECL library combining magnetometer data with other sensor measurements, which can become computionally expensive, especially when dealing with inconsistent magnetic field readings. This can significantly increase EKF processing time. The authors propose a solution of moving the magnetic field estimation calculations to a separate, lower-priority thread. This would prevent them from blocking the main EKF loop and causing delays. The implemented monitoring techniques allow for continuous observation of the real-time operating system’s behavior. Since addressing the identified issues, no significant problems have been encountered during flights. However, ongoing monitoring is crucial due to the infrequent and unpredictable nature of the disturbances.

Funder

Ministry of Education in Poland

Publisher

MDPI AG

Reference38 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3