Numerical Study on Influence of Wall Thermal Effect on Thermal Impact of Gas Explosion

Author:

Guo Xu1,Jia Zhenzhen1ORCID,Ye Qing1

Affiliation:

1. School of Resource, Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan 411201, China

Abstract

A gas explosion can impact the roadway and cause serious damage. The thermal effect of the roadway wall is an important factor affecting the gas explosion and its impact. In view of the shortcomings of existing research studies, a basic numerical model of a pipe is established under the thermal impact effect of a gas explosion based on LS-DYNA software. The thermal conductivity coefficients of the pipe wall are set as 15, 30, 45 and 60 W/(m·K), respectively. Five measuring points A–E are set on the inner wall of the pipe, and four measuring points F-I are set in the air region. The equivalent stress distribution of the pipe wall, the pressure and displacement of each measuring point and the time history curve of shock wave velocity at the measuring point in the air region are numerically simulated under the impact of a gas explosion with different thermal effects. The research results show that the stress concentration phenomenon is more obvious and the equivalent stress distribution is more uneven, and the gas explosion intensity is greater when the pipe wall is approximately adiabatic. With an increase in the thermal conductivity coefficient, the amount of thermal dissipation through the pipe wall increases, the pressure peak value of each measuring point of the pipe wall decreases as a whole, and the radial displacement value of the arranged measuring points presents a smaller trend. With an increase in the thermal conductivity coefficient of the pipe wall, the thermal dissipation of the pipe wall increases, so the subsequent energy that drives the shock wave decreases, the impact degree on the pipe wall also decreases, and at the same time, in the pipe with a high thermal conductivity coefficient, the gas explosion energy involved in expansion work is lower, and thus the explosion intensity reduces. The shock wave velocity at a location farther away from the explosion source after a gas explosion also decreases. The research results have important practical significance for improving the theory of the wall thermal effect and the level of gas explosion prevention in confined spaces.

Funder

National Natural Science Foundation Project of China

Scientific Research Fund of the Hunan Provincial Education Department

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference25 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3