Simulation and Optimization of a Planar-Type Micro-Hotplate with Si3N4-SiO2 Transverse Composite Dielectric Layer and Annular Heater

Author:

Wei Guangfen,Wang Pengfei,Li Meihua,Lin Zhonghai,Nai Changxin

Abstract

Micro-hotplates (MHPs) have become widely used basic structures in many micro sensors and actuators. Based on the analysis of the general heat transfer model, we propose a new MHP design based on a transversal composite dielectric layer, consisting of different heat transfer materials. Two general proven materials with different thermal conductivity, Si3N4 and SiO2, are chosen to form the composite dielectric layer. An annular heater is designed with a plurality of concentric rings connected with each other. The relationship between MHP performance and its geometrical parameters, including temperature distribution and uniformity, thermal deformation, and power dissipation, has been fully investigated using COMSOL simulation. The results demonstrate that the new planar MHP of 2 μm thick with a Si3N4-SiO2 composite dielectric layer and annular heater can reach 300 °C at a power of 35.2 mW with a mechanical deformation of 0.132 μm, at a large heating area of about 0.5 mm2. The introduction of the composite dielectric layer effectively reduces the lateral heat conduction loss and alleviates the mechanical deformation of the planar MHP compared with a single SiO2 dielectric layer or Si3N4 dielectric layer.

Funder

The Yantai Science and Technology Innovation Development Project of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3