Author:
Wei Guangfen,Wang Pengfei,Li Meihua,Lin Zhonghai,Nai Changxin
Abstract
Micro-hotplates (MHPs) have become widely used basic structures in many micro sensors and actuators. Based on the analysis of the general heat transfer model, we propose a new MHP design based on a transversal composite dielectric layer, consisting of different heat transfer materials. Two general proven materials with different thermal conductivity, Si3N4 and SiO2, are chosen to form the composite dielectric layer. An annular heater is designed with a plurality of concentric rings connected with each other. The relationship between MHP performance and its geometrical parameters, including temperature distribution and uniformity, thermal deformation, and power dissipation, has been fully investigated using COMSOL simulation. The results demonstrate that the new planar MHP of 2 μm thick with a Si3N4-SiO2 composite dielectric layer and annular heater can reach 300 °C at a power of 35.2 mW with a mechanical deformation of 0.132 μm, at a large heating area of about 0.5 mm2. The introduction of the composite dielectric layer effectively reduces the lateral heat conduction loss and alleviates the mechanical deformation of the planar MHP compared with a single SiO2 dielectric layer or Si3N4 dielectric layer.
Funder
The Yantai Science and Technology Innovation Development Project of China
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献