Abstract
A continued shift of human mobility towards sustainable and active mobility modes is a major concern for society in order to reduce the human contribution to climate change as well as to improve liveability and health in urban environments. For this change to succeed, non-motorized modes of transport need to become more attractive. Cycling can play a substantial role for short to medium distances, but perceived safety and stress levels are still major concerns for cyclists. Therefore, a quantitative assessment of cyclists’ stress sensations constitutes a valuable input for urban planning and for optimized routing providing low-stress routes. This paper aims to investigate stress sensations of cyclists through quantifying physiological measurements and their spatial correlation as an intersubjective indicator for perceived bikeability. We developed an automated workflow for stress detection and aggregation, and validated it in a case study in the city of Salzburg, Austria. Our results show that measured stress generally matches reported stress perception and can thus be considered a valuable addition to mobility planning processes.
Subject
Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献