Abstract
In magnetically coupled resonant wireless power transfer (MCR-WPT) systems, the nonhomogeneous magnetic field of the transmitting coil can lead to frequency splitting phenomena and lower efficiency. In this paper, a 3D transmitting coil (TX) with a homogeneous magnetic field distribution is proposed. The proposed coil structure consists of two layers with different numbers of turns per layer, i.e., with different current distributions. To achieve a homogeneous magnetic field distribution with a high magnetic field value and a low profile of the 3D coil structure, the optimal layer placement and current distribution were optimized using a genetic algorithm (GA). The prototype of the optimized coil was fabricated, and its magnetic field distribution was measured. The measurement results agreed more than 95% with the simulation results. The measured homogeneous area was at least 12.5% larger than reported in the literature. By using a different current distribution, the profile of the 3D coil structure was successfully reduced by 29% and the average magnetic field value was increased by 25% compared to our previous work.
Funder
Croatian Science Foundation
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献