Flexible NAD+ Binding in Deoxyhypusine Synthase Reflects the Dynamic Hypusine Modification of Translation Factor IF5A

Author:

Chen Meirong,Gai Zuoqi,Okada Chiaki,Ye Yuxin,Yu JianORCID,Yao MinORCID

Abstract

The eukaryotic and archaeal translation factor IF5A requires a post-translational hypusine modification, which is catalyzed by deoxyhypusine synthase (DHS) at a single lysine residue of IF5A with NAD+ and spermidine as cofactors, followed by hydroxylation to form hypusine. While human DHS catalyzed reactions have been well characterized, the mechanism of the hypusination of archaeal IF5A by DHS is not clear. Here we report a DHS structure from Pyrococcus horikoshii OT3 (PhoDHS) at 2.2 Å resolution. The structure reveals two states in a single functional unit (tetramer): two NAD+-bound monomers with the NAD+ and spermidine binding sites observed in multi-conformations (closed and open), and two NAD+-free monomers. The dynamic loop region V288–P299, in the vicinity of the active site, adopts different positions in the closed and open conformations and is disordered when NAD+ is absent. Combined with NAD+ binding analysis, it is clear that PhoDHS can exist in three states: apo, PhoDHS-2 equiv NAD+, and PhoDHS-4 equiv NAD+, which are affected by the NAD+ concentration. Our results demonstrate the dynamic structure of PhoDHS at the NAD+ and spermidine binding site, with conformational changes that may be the response to the local NAD+ concentration, and thus fine-tune the regulation of the translation process via the hypusine modification of IF5A.

Funder

Japan Agency for Medical Research and Development

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3