Sustainable Anodes for Lithium- and Sodium-Ion Batteries Based on Coffee Ground-Derived Hard Carbon and Green Binders

Author:

Darjazi Hamideh,Staffolani AntunesORCID,Sbrascini Leonardo,Bottoni Luca,Tossici Roberto,Nobili Francesco

Abstract

The reuse and recycling of products, leading to the utilization of wastes as key resources in a closed loop, is a great opportunity for the market in terms of added value and reduced environmental impact. In this context, producing carbonaceous anode materials starting from raw materials derived from food waste appears to be a possible approach to enhance the overall sustainability of the energy storage value chain, including Li-ion (LIBs) and Na-ion batteries (NIBs). In this framework, we show the behavior of anodes for LIBs and NIBs prepared with coffee ground-derived hard carbon as active material, combined with green binders such as Na-carboxymethyl cellulose (CMC), alginate (Alg), or polyacrylic acid (PAA). In order to evaluate the effect of the various binders on the charge/discharge performance, structural and electrochemical investigations are carried out. The electrochemical characterization reveals that the alginate-based anode, used for NIBs, delivers much enhanced charge/discharge performance and capacity retention. On the other hand, the use of the CMC-based electrode as LIBs anode delivers the best performance in terms of discharge capacity, while the PAA-based electrode shows enhanced cycling stability. As a result, the utilization of anode materials derived from an abundant food waste, in synergy with the use of green binders and formulations, appears to be a viable opportunity for the development of efficient and sustainable Li-ion and Na-ion batteries.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3