Robust Controller for Pursuing Trajectory and Force Estimations of a Bilateral Tele-Operated Hydraulic Manipulator

Author:

Kallu Karam Dad,Zafar AmadORCID,Ali Muhammad UmairORCID,Ahmed ShahzadORCID,Lee Min Cheol

Abstract

In hazardous/emergency situations, public safety is of the utmost concern. In areas where human access is not possible or is restricted due to hazardous situations, a system or robot that can be distantly controlled is mandatory. There are many applications in which force cannot be applied directly while using physical sensors. Therefore, in this research, a robust controller for pursuing trajectory and force estimations while deprived of any signals or sensors for bilateral tele-operation of a hydraulic manipulator is suggested to handle these hazardous, emergency circumstances. A terminal sliding control with a sliding perturbation observer (TSMCSPO) is considered as the robust controller for a coupled leader and hydraulic follower system. The ultimate use of this controller is as a sliding perturbation observer (SPO) that can estimate the reaction force without any physical force sensors. Robust and perfect position tracking is attained with terminal sliding mode control (TSMC) in addition to control of the hydraulic follower manipulator. The force estimation and pursuing trajectory for the leader–follower system is built upon a bilateral tele-operation control approach. The difference between the reaction forces (caused by the remote environment) and the operating forces (applied by the human operator) required the involvement of an impedance model. The impedance model is implemented in the leader manipulator to provide human operators with an actual sense of the reaction force while the manipulator connects with the remote environment. A camera is used to ensure the safety of the workplace through visual feedback. The experimental results showed that the controller was robust at pursuing trajectory and force estimations for the bilateral tele-operation control of a hydraulic manipulator.

Funder

We will add later

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3