Author:
Wu Yao,Yang Lihua,Xu Tengfei,Wu Wei
Abstract
Temperature rise and elastic deformation are unavoidable issues occurring in high-speed gas microbearings due to the dominant small-scale fluid dynamics in rarefied gas flow applications. In this paper, thermo-elasto-aerodynamic analysis requires simultaneously solving the modified Reynolds equation, modified energy equation, temperature–viscosity relationship and the elasticity equations for predicting the lubrication characteristics of microbearings. A thermo-elasto-aerodynamic lubrication is systematically investigated by using the partial derivative method, finite difference formulation and the finite element approach. The results indicate that, compared with rigid microbearing which has a constant viscosity gas lubricant, the temperature effect increases the load capacity, friction coefficient and stiffness coefficients, and it decreases the attitude angle and damping coefficients of the microbearing. The flexibility of the bearing pad also leads to the increase in load capacity and direct stiffness coefficients, while it remains to further decrease the direct damping coefficients on the basis of thermo-aerodynamic performance. The present study is conducive to accurately analyze the microscopic flow properties in a microbearing-rotor system.
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献