CRISPR/Cas9-Mediated Gene Editing in Salmonids Cells and Efficient Establishment of Edited Clonal Cell Lines

Author:

Strømsnes Trygve A. H.ORCID,Schmidke Sebastian E.,Azad Mitra,Singstad Øyvind,Grønsberg Idun M.,Dalmo Roy A.ORCID,Okoli Arinze S.

Abstract

Finfish production has seen over three-fold increase in the past 30 years (1990–2020), and Atlantic salmon (A. salmon; salmo salar) accounted for approximately 32.6% of the total marine and coastal aquaculture of all finfish species in the year 2020, making it one of the most profitable farmed fish species globally. This growth in production is, however, threatened by a number of problems which can be solved using the CRISPR/Cas technology. In vitro applications of CRISPR/Cas using cell lines can complement its in vivo applications, but salmonids-derived cell lines are difficult to gene edit because they grow slowly, are difficult to transfect and isolate single clones of gene-edited cells. While clonal isolation of the gene-edited Chinook salmon cell line (CHSE-214) has successfully been performed, there is no report of successful clonal isolation of the gene-edited A. salmon ASK-1 and SHK-1cell lines. In the current study, two gene loci—cr2 and mmp9 of A. salmon—were efficiently edited using the ribonucleoprotein (RNP) and plasmid CRISPR/Cas9 strategies. Edited cells were enriched using flow cytometer-activated cell sorting (FACS), followed by clonal isolation and expansion of edited cells. The study both confirms the recent report of the highly efficient editing of these widely used model cell lines, as well as extends the frontline in the single-cell cloning of gene-edited salmonids cells. The report also highlights the pitfalls and future directions in the application of CRISPR/Cas9 in these cells.

Funder

Regional Research Fund (Regionale Forskningsfond, RFF-Nord), Norland

Ministry of Climate & Environment (Klima og Miljødepartmentet, KLD), Norway

Research Council of Norway

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference36 articles.

1. FAO (2022). The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation, FAO.

2. Global aquaculture productivity, environmental sustainability, and climate change adaptability;Ahmed;Environ. Manag.,2019

3. Infectious diseases affect marine fisheries and aquaculture economics;Lafferty;Ann. Rev. Mar. Sci.,2015

4. Cas9 specifies functional viral targets during CRISPR–Cas adaptation;Heler;Nature,2015

5. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity;Jinek;Science,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3