Abstract
Reasonable optimal operation policy for complex multiple reservoir systems is very important for the safe and efficient utilization of water resources. The operation policy of multiple hydropower reservoirs should be optimized to maximize total hydropower generation, while ensuring flood control safety by effective and efficient storage and release policy of multiple reservoirs. To achieve this goal, a new meta-heuristic algorithm, salp swarm algorithm (SSA), is used to optimize the joint operation of multiple hydropower reservoirs for the first time. SSA is a competitive bio-inspired optimizer, which has received substantial attention from researchers in a wide variety of applications in finance, engineering, and science because of its little controlling parameters and adaptive exploratory behavior. However, it still faces few drawbacks such as lack of exploitation and local optima stagnation, leading to a slow convergence rate. In order to tackle these problems, multiple strategies combining sine cosine operator, opposition-based learning mechanism, and elitism strategy are applied to the original SSA. The sine cosine operator is applied to balance the exploration and exploitation over the course of iteration; the opposition-based learning mechanism is used to enhance the diversity of the swarm; and the elitism strategy is adopted to find global optima. Then, the improved SSA (ISSA) is compared with six well-known meta-heuristic algorithms on 23 classical benchmark functions. The results obtained demonstrate that ISSA outperforms most of the well-known algorithms. Then, ISSA is applied to optimal operation of multiple hydropower reservoirs in the real world. A multiple reservoir system, namely Xiluodu Reservoir and Xiangjiaba Rservoir, in the upper Yangtze River of China are selected as a case study. The results obtained show that the ISSA is able to solve a real-world optimization problem with complex constraints. In addition, for the typical flood with a 100 return period in 1954, the maximum hydropower generation of multiple hydropower reservoirs is about 6671 GWh in the case of completing the flood control task, increasing by 1.18% and 1.77% than SSA and Particle Swarm Optimization (PSO), respectively. Thus, ISSA can be used as an alternative effective and efficient tool for the complex optimization of multiple hydropower reservoirs. The water resources in the river basin can be further utilized by the proposed method to cope with the increasingly serious climate change.
Funder
National Natural Science Foundation of China
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献