Light-Driven Biocatalysis in Liposomes and Polymersomes: Where Are We Now?

Author:

Wang Guoshu,Castiglione KathrinORCID

Abstract

The utilization of light energy to power organic-chemical transformations is a fundamental strategy of the terrestrial energy cycle. Inspired by the elegance of natural photosynthesis, much interdisciplinary research effort has been devoted to the construction of simplified cell mimics based on artificial vesicles to provide a novel tool for biocatalytic cascade reactions with energy-demanding steps. By inserting natural or even artificial photosynthetic systems into liposomes or polymersomes, the light-driven proton translocation and the resulting formation of electrochemical gradients have become possible. This is the basis for the conversion of photonic into chemical energy in form of energy-rich molecules such as adenosine triphosphate (ATP), which can be further utilized by energy-dependent biocatalytic reactions, e.g. carbon fixation. This review compares liposomes and polymersomes as artificial compartments and summarizes the types of light-driven proton pumps that have been employed in artificial photosynthesis so far. We give an overview over the methods affecting the orientation of the photosystems within the membranes to ensure a unidirectional transport of molecules and highlight recent examples of light-driven biocatalysis in artificial vesicles. Finally, we summarize the current achievements and discuss the next steps needed for the transition of this technology from the proof-of-concept status to preparative applications.

Funder

Bundesministerium für Bildung und Forschung

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3