Detecting Fall Risk and Frailty in Elders with Inertial Motion Sensors: A Survey of Significant Gait Parameters

Author:

Ruiz-Ruiz LuisaORCID,Jimenez Antonio R.ORCID,Garcia-Villamil GuillermoORCID,Seco FernandoORCID

Abstract

In the elderly, geriatric problems such as the risk of fall or frailty are a challenge for society. Patients with frailty present difficulties in walking and higher fall risk. The use of sensors for gait analysis allows the detection of objective parameters related to these pathologies and to make an early diagnosis. Inertial Measurement Units (IMUs) are wearables that, due to their accuracy, portability, and low price, are an excellent option to analyze human gait parameters in health-monitoring applications. Many relevant gait parameters (e.g., step time, walking speed) are used to assess motor, or even cognitive, health problems in the elderly, but we perceived that there is not a full consensus on which parameters are the most significant to estimate the risk of fall and the frailty state. In this work, we analyzed the different IMU-based gait parameters proposed in the literature to assess frailty state (robust, prefrail, or frail) or fall risk. The aim was to collect the most significant gait parameters, measured from inertial sensors, able to discriminate between patient groups and to highlight those parameters that are not relevant or for which there is controversy among the examined works. For this purpose, a literature review of the studies published in recent years was carried out; apart from 10 previous relevant reviews using inertial and other sensing technologies, a total of 22 specific studies giving statistical significance values were analyzed. The results showed that the most significant parameters are double-support time, gait speed, stride time, step time, and the number of steps/day or walking percentage/day, for frailty diagnosis. In the case of fall risk detection, parameters related to trunk stability or movements are the most relevant. Although these results are important, the total number of works found was limited and most of them performed the significance statistics on subsets of all possible gait parameters; this fact highlights the need for new frailty studies using a more complete set of gait parameters.

Funder

European Union

Spanish Ministry of Science

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3