Anomaly Detection Algorithm for Photovoltaic Cells Based on Lightweight Multi-Channel Spatial Attention Mechanism

Author:

Chen Aidong123,Li Xiang12,Jing Hongyuan23,Hong Chen23,Li Minghai23

Affiliation:

1. Beijing Key Laboratory of Information Service Engineering, Beijing 100101, China

2. College of Robotics, Beijing Union University, Beijing 100101, China

3. Research Centre for Multi-Intelligent Systems, Beijing 100101, China

Abstract

With the proposed goal of “Carbon Neutrality”, photovoltaic energy is gradually gaining the leading role in energy transformation. At present, crystalline silicon cells are still the mainstream technology in the photovoltaic industry, but due to the similarity of defect characteristics and the small scale of the defects, automatic defect detection of photovoltaic cells (PV) by electroluminescence (EL) imaging is a challenging task. In order to better meet the growing demand for high-quality photovoltaic cell products in intelligent manufacturing and use, and ensure the safe and efficient operation of photovoltaic power stations, this paper proposes an improved abnormal detection method based on Faster R-CNN for the surface defect EL imaging of photovoltaic cells, which integrates a lightweight channel and spatial convolution attention module. It can analyze the crack defects in complex scenes more efficiently. The clustering algorithm was used to obtain a more targeted anchor frame for photovoltaic cells, which made the model converge faster and enhanced the detection ability. The normalized distance between the prediction box and the target box is minimized by considering the DIoU loss function for the overlapping area of the boundary box and the distance between the center points. The experiment shows that the average accuracy of surface defect detection for EL images of photovoltaic cells is improved by 14.87% compared with the original algorithm, which significantly improves the accuracy of defect detection. The model can better detect small target defects, meet the requirements of surface defect detection of photovoltaic cells, and proves that it has good application prospects in the field of photovoltaic cell defect detection.

Funder

National key research and development plan " Multidimensional visual information edge intelligent processor chip"

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3