Abstract
Caffeic acid (CA), a phenolic acid, is a powerful antioxidant with proven effectiveness. CA instability gives it limited use, so encapsulation in polymeric nanomaterials has been used to solve the problem but also to obtain topical hydrogel formulas. Two different formulas of caffeic acid liposomes were incorporated into three different formulas of carbopol-based hydrogels. A Franz diffusion cell system was used to evaluate the release of CA from hydrogels. For the viscoelastic measurements of the hydrogels, the equilibrium flow test was used. The dynamic tests were examined at rest by three oscillating tests: the amplitude test, the frequency test and the flow and recovery test. These carbopol gels have a high elasticity at flow stress even at very low polymer concentrations. In the analysis of the texture, the increase of the polymer concentration from 0.5% to 1% determined a linear increase of the values of the textural parameters for hydrogels. The textural properties of 1% carbopol-based hydrogels were slightly affected by the addition of liposomal vesicle dispersion and the firmness and shear work increased with increasing carbomer concentration.
Subject
Drug Discovery,Pharmaceutical Science,Molecular Medicine
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献