Evaluation of Docking Machine Learning and Molecular Dynamics Methodologies for DNA-Ligand Systems

Author:

de Oliveira Tiago AlvesORCID,Medaglia Lucas Rolim,Maia Eduardo Habib Bechelane,Assis Letícia Cristina,de Carvalho Paulo BatistaORCID,da Silva Alisson MarquesORCID,Taranto Alex GutterresORCID

Abstract

DNA is a molecular target for the treatment of several diseases, including cancer, but there are few docking methodologies exploring the interactions between nucleic acids with DNA intercalating agents. Different docking methodologies, such as AutoDock Vina, DOCK 6, and Consensus, implemented into Molecular Architect (MolAr), were evaluated for their ability to analyze those interactions, considering visual inspection, redocking, and ROC curve. Ligands were refined by Parametric Method 7 (PM7), and ligands and decoys were docked into the minor DNA groove (PDB code: 1VZK). As a result, the area under the ROC curve (AUC-ROC) was 0.98, 0.88, and 0.99 for AutoDock Vina, DOCK 6, and Consensus methodologies, respectively. In addition, we proposed a machine learning model to determine the experimental ∆Tm value, which found a 0.84 R2 score. Finally, the selected ligands mono imidazole lexitropsin (42), netropsin (45), and N,N′-(1H-pyrrole-2,5-diyldi-4,1-phenylene)dibenzenecarboximidamide (51) were submitted to Molecular Dynamic Simulations (MD) through NAMD software to evaluate their equilibrium binding pose into the groove. In conclusion, the use of MolAr improves the docking results obtained with other methodologies, is a suitable methodology to use in the DNA system and was proven to be a valuable tool to estimate the ∆Tm experimental values of DNA intercalating agents.

Funder

National Council for Scientific and Technological Development

Fundação de Amparo à Pesquisa do Estado de Minas Gerais

Publisher

MDPI AG

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3