Affiliation:
1. Department of Electrical and Electronics Engineering, Faculty of Engineering, Duzce University, 81620 Duzce, Turkey
Abstract
Orthogonal time frequency space (OTFS) modulation has recently found its place in the literature as a much more effective waveform in time-varying channels. It is anticipated that OTFS will be widely used in the communications of smart vehicles, especially those considered within the scope of Internet of Things (IoT). There are efforts to obtain customized traditional point-to-point single-input single-output (SISO)-OTFS studies in the literature, but their BER performance seems a bit low. It is possible to use cooperative communications in order improve BER performance, but it is noticeable that there are very few OTFS studies in the area of cooperative communications. In this study, to the best of the authors’ knowledge, it is addressed for the first time in the literature that better performance is achieved for the OTFS waveform transmission in a selective decode-and-forward (SDF) cooperative communication scenario. In this context, by establishing a cooperative communication model consisting of a base station/source, a traffic sign/relay and a smart vehicle/destination moving at a constant speed, an end-to-end BER expression is derived. SNR-BER analysis is performed with this SDF-OTFS scheme and it is shown that a superior BER performance is achieved compared to the traditional point-to-point single-input single-output (SISO)-OTFS structure.
Funder
Scientific and Technological Research Council of Turkiye