Enhancing Stiffness, Toughness, and Creep in a 3D-Printed Bio-Based Photopolymer Using Ultra-Low Contents of Nanofibrillated Cellulose

Author:

Barkane Anda1ORCID,Jurinovs Maksims1ORCID,Starkova Olesja2ORCID,Grase Liga3ORCID,Schmidt Daniel F.4ORCID,Gaidukovs Sergejs1

Affiliation:

1. Institute of Polymer Materials, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena 3/7, LV-1048 Riga, Latvia

2. Institute for Mechanics of Materials, University of Latvia, Jelgavas 3, LV-1004 Riga, Latvia

3. Institute of Materials and Surface Engineering, Faculty of Materials Science and Applied Chemistry, P. Valdena 3/7, LV-1048 Riga, Latvia

4. Department of Materials Research and Technology (MRT), Luxembourg Institute of Science and Technology (LIST), 5 Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg

Abstract

UV-light-assisted additive manufacturing (AM) technologies require bio-based resins that can compete with commercial petroleum-based ones to enable a more sustainable future. This research proposes a significantly improved vegetable oil-based resin reinforced with nanofibrillated cellulose (NFC). The incorporation of ultra-low concentrations (0.1–0.5 wt%) of NFC produced disproportionate enhancements in mechanical performance. Noteworthy, a 2.3-fold increase in strain at the break and a 1.5-fold increase in impact strength were observed with only 0.1 wt% of NFC, while at 0.5 wt%, a 2.7-fold increase in tensile modulus and a 6.2-fold increase in toughness were measured. This is in spite of NFC agglomeration at even the lowest loadings, as observed via examination of fracture surfaces and dynamic mechanical analysis (DMA) Cole–Cole plot analysis. The addition of 0.1 wt% NFC also increased creep resistance by 32% and reduced residual strain by 34% following creep recovery. The Burgers model satisfactorily described the composites’ viscoelastic–viscoplastic behavior within the applied stress levels of 1–3 MPa. The successful development of novel NFC/bio-resin composites with enhanced mechanical performance and long-term stability highlights the potential of these composites to substitute petroleum-based resins in the context of AM resins.

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Ceramics and Composites

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3