Advancing Hyperspectral Image Analysis with CTNet: An Approach with the Fusion of Spatial and Spectral Features

Author:

Yadav Dhirendra Prasad12,Kumar Deepak2,Jalal Anand Singh1,Sharma Bhisham3ORCID,Webber Julian L.4ORCID,Mehbodniya Abolfazl4

Affiliation:

1. Department of Computer Engineering & Applications, G.L.A. University, Mathura 281406, Uttar Pradesh, India

2. Department of Computer Engineering, NIT Meghalaya, Shillong 793001, Meghalaya, India

3. Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, Punjab, India

4. Department of Electronics and Communication Engineering, Kuwait College of Science and Technology (KCST), Doha Area, 7th Ring Road, Kuwait City 13133, Kuwait

Abstract

Hyperspectral image classification remains challenging despite its potential due to the high dimensionality of the data and its limited spatial resolution. To address the limited data samples and less spatial resolution issues, this research paper presents a two-scale module-based CTNet (convolutional transformer network) for the enhancement of spatial and spectral features. In the first module, a virtual RGB image is created from the HSI dataset to improve the spatial features using a pre-trained ResNeXt model trained on natural images, whereas in the second module, PCA (principal component analysis) is applied to reduce the dimensions of the HSI data. After that, spectral features are improved using an EAVT (enhanced attention-based vision transformer). The EAVT contained a multiscale enhanced attention mechanism to capture the long-range correlation of the spectral features. Furthermore, a joint module with the fusion of spatial and spectral features is designed to generate an enhanced feature vector. Through comprehensive experiments, we demonstrate the performance and superiority of the proposed approach over state-of-the-art methods. We obtained AA (average accuracy) values of 97.87%, 97.46%, 98.25%, and 84.46% on the PU, PUC, SV, and Houston13 datasets, respectively.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3