Affiliation:
1. Faculty of Social Sciences, University of Ljubljana, 1000 Ljubljana, Slovenia
Abstract
The new logic of partitions is dual to the usual Boolean logic of subsets (usually presented only in the special case of the logic of propositions) in the sense that partitions and subsets are category-theoretic duals. The new information measure of logical entropy is the normalized quantitative version of partitions. The new approach to interpreting quantum mechanics (QM) is showing that the mathematics (not the physics) of QM is the linearized Hilbert space version of the mathematics of partitions. Or, putting it the other way around, the math of partitions is a skeletal version of the math of QM. The key concepts throughout this progression from logic, to logical information, to quantum theory are distinctions versus indistinctions, definiteness versus indefiniteness, or distinguishability versus indistinguishability. The distinctions of a partition are the ordered pairs of elements from the underlying set that are in different blocks of the partition and logical entropy is defined (initially) as the normalized number of distinctions. The cognate notions of definiteness and distinguishability run throughout the math of QM, e.g., in the key non-classical notion of superposition (=ontic indefiniteness) and in the Feynman rules for adding amplitudes (indistinguishable alternatives) versus adding probabilities (distinguishable alternatives).
Reference79 articles.
1. Ellerman, D. (2023). The Logic of Partitions: With Two Major Applications. Studies in Logic 101, College Publications.
2. Ellerman, D. (2021). New Foundations for Information Theory: Logical Entropy and Shannon Entropy, Springer Nature.
3. Information and the Reconstruction of Quantum Physics;Jaeger;Ann. Phys.,2019
4. Castell, L., and Ischebeck, O. (2003). Time, Quantum and Information, Springer.
5. Sloane, N.J.A., and Wyner, A.D. (1993). Claude E. Shannon: Collected Papers, IEEE Press.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Conclusions;SpringerBriefs in Philosophy;2024