Abstract
Many spatial decision support systems suffer from user adoption issues in practice due to lack of trust, technical expertise, and resources. Automated machine learning has recently allowed non-experts to explore and apply machine-learning models in the industry without requiring abundant expert knowledge and resources. This paper reviews recent literature from 136 papers, and proposes a general framework for integrating spatial decision support systems with automated machine learning as an opportunity to lower major user adoption barriers. Challenges of data quality, model interpretability, and practical usefulness are discussed as general considerations for system implementation. Research opportunities related to spatially explicit models in AutoML, and resource-aware, collaborative/connected, and human-centered systems are also discussed to address these challenges. This paper argues that integrating automated machine learning into spatial decision support systems can not only potentially encourage user adoption, but also mutually benefit research in both fields—bridging human-related and technical advancements for fostering future developments in spatial decision support systems and automated machine learning.
Funder
Natural Sciences and Engineering Research Council of Canada
Subject
Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献