Vulnerability and Burden of All-Cause Mortality Associated with Particulate Air Pollution during COVID-19 Pandemic: A Nationwide Observed Study in Italy

Author:

Ye Tingting,Xu Rongbin,Yu Wenhua,Chen Zhaoyue,Guo YumingORCID,Li Shanshan

Abstract

Background: Limited evidence is available on the health effects of particulate matter (PM including PM2.5 with an aerodynamic diameter ≤ 2.5 μm; PM10, ≤ 10 μm; PM2.5–10, 2.5–10 μm) during the pandemic of COVID-19 in Italy. The aims of the study were to examine the associations between all-cause mortality and PM in the pandemic period and compare them to the normal periods (2015–2019). Methods: We collected daily data regarding all-cause mortality (stratified by age and gender), and PM concentrations for 107 Italian provinces from 1 January 2015 to 31 May 2020. A time-stratified case-cross design with the distributed lag non-linear model was used to examine the association between PM and all-cause mortality. We also compared the counts and fractions of death attributable to PM in two periods. Results: Italy saw an increase in daily death counts while slight decreases in PM concentrations in pandemic period. Each 10 µg/m3 increase in PM was associated with much higher increase in daily all-cause mortality during the pandemic period compared to the same months during 2015–2019 (increased mortality rate: 7.24% (95%CI: 4.84%, 9.70%) versus 1.69% (95%CI: 1.12%, 2.25%) for PM2.5; 3.45% (95%CI: 2.58%, 4.34%) versus 1.11% (95%CI: 0.79%, 1.42%) for PM10; 4.25% (95%CI: 2.99%, 5.52%) versus 1.76% (95%CI: 1.14%, 2.38%) for PM2.5–10). The counts and fractions of deaths attributable to PM were higher in 2020 for PM2.5 (attributable death counts: 20,062 versus 3927 per year in 2015–2019; attributable fractions: 10.2% versus 2.4%), PM10 (15,112 versus 3999; 7.7% versus 2.5%), and PM2.5–10 (7193 versus 2303; 3.7% versus 1.4%). Conclusion: COVID-19 pandemic increased the vulnerability and excess cases of all-cause mortality associated with short-term exposure to PM2.5, PM2.5–10, and PM10 in Italy, despite a decline in air pollution level.

Funder

China Scholarship Council

Australian National Health and Medical Research Council

Publisher

MDPI AG

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3