Effect of Magnetic Coupling on the Optical Properties of Oxide Co Nanowires on Vicinal Pt Surfaces

Author:

Tsysar Kseniya M.1ORCID,Bazhanov Dmitry I.12,Smelova Ekaterina M.1

Affiliation:

1. Faculty of Physics, M.V. Lomonosov Moscow State University, GSP-1, 1-2 Leninskiye Gory, 119991 Moscow, Russia

2. Federal Research Center “Computer Science and Control”, Russian Academy of Sciences (FRC CSC RAS), Vavilova St. 44/2, 119333 Moscow, Russia

Abstract

Nowadays, modern scientific research has sparked a renewed interest to study the interaction of electromagnetic field (EM) with magnetic nanostructures and in particular in nanophotonics and spintronics. The current work is devoted to an ab initio study of the magneto-optical properties of step-decorated oxide Co nanowires (1D oxides) on vicinal Pt surfaces. Theoretical calculations of the magnetic moments are based on ab initio spin-polarized density-functional theory (DFT) including a self-consistent treatment of spin-orbit coupling. The first-principles calculations revealed the effect of magnetic coupling between cobalt spins on refractivity and extinction spectra of these 1D oxides governed by atomic structure and cobalt-oxygen interaction within a nanowire at the step edge. The emergence of a sharp pronounced peak in the spectral difference of the refractive indexes has been observed between ferromagnetic and antiferromagnetic configurations of the nanowire. Anisotropy of an extinction coefficient in the terahertz (THz) range of the spectra was established for oxide Co nanowires in an antiferromagnetic state in contrast with a ferromagnetic one.

Publisher

MDPI AG

Subject

Materials Chemistry,Chemistry (miscellaneous),Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3