Microstructure and Magnetic Property Evolution Induced by Heat Treatment in Fe-Si/SiO2 Soft Magnetic Composites

Author:

Li Shaogang1,Ju Nachuan1,Wang Jinyang1,Zou Rongyu1,Lin Shaochuan1,Yang Minghui1

Affiliation:

1. Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Anhui University of Technology, Ministry of Education, Ma’anshan 243002, China

Abstract

SiO2 has been extensively studied as a superior insulating layer for innovative Fe-based soft magnetic composites (SMCs). During the preparation process of SMCs, appropriate heat treatment can effectively alleviate internal stress, reduce dislocation density, decrease coercivity, and enhance permeability. Maintaining the uniformity and integrity of SiO2 insulating layers during heat treatment is a challenging task. Hence, it is crucial to explore the heat-treatment process and its effects on the magnetic properties of SMCs and their insulating layers. Herein, Fe–Si/SiO2 particles were prepared using chemical vapor deposition (CVD), and Fe–Si/SiO2 SMCs having a core–shell heterostructure were synthesized through hot-press sintering, and investigations were conducted into how heat-treatment temperature affected the microstructure of SMCs. This study thoroughly investigated the relationship between the evolution of SiO2 insulating layers and the magnetic properties. Additionally, the impact of the heat-treatment time on the magnetic properties of Fe-Si/SiO2 SMCs was evaluated. The results showed that in the temperature range of 823–923 K, the core–shell heterostructures grew more homogeneous and uniform. Concurrently, the stress and defects inside the Fe-Si/SiO2 SMCs were eliminated. When the temperature was raised over 973 K, the core–shell heterostructure was disrupted, and SiO2 began to disperse. After following a heat-treatment process (923 K) lasting up to 60 min, the resulting SMCs had high resistivity (1.04 mΩ·cm), the lowest hysteresis loss (P10 mt/100 kHz of 344.3 kW/m3), high saturation magnetization (191.2 emu/g). This study presents a new technique for producing SMCs using ceramic oxide as insulating layers. This study also includes a comprehensive analysis of the relationship between microstructure, magnetic properties, and heat treatment process parameters. These findings are crucial in expanding the potential applications of ceramic oxide.

Funder

Chinese National Science Foundation

Scientific Research Planning Project of Anhui Province

Key Research and Development Plan of Anhui Province

Publisher

MDPI AG

Subject

Materials Chemistry,Chemistry (miscellaneous),Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3