Effect of Polyaniline on Sulfur/Sepiolite Composite Cathode for Lithium-Sulfur Batteries

Author:

Chelladurai Kalaiselvi,Venkatachalam Priyanka,Rengapillai Subadevi,Liu Wei-Ren,Huang Chia-Hung,Marimuthu SivakumarORCID

Abstract

Composite materials with a stable network structure consisting of natural sepiolite (Sp) powders (both sieved sepiolite and post-treated sepiolite), sulfur(S), and conductive polymer Polyaniline (PAni) have been successfully synthesized using a simple heat treatment. The morphology of composites illustrates that the sepiolite is composed of many needle-like fibrous clusters. The initial discharge capacity of the post-treated sepiolite/sulfur/PAni composite is about 1230 mA h g−1 at 0.1 C, and it remains at 826 mA h g−1 even after 40 cycles with the corresponding coulombic efficiency above 97%. Such performance is attributed to the specific porous structure, outstanding adsorption characteristics, and excellent ion exchange capability of sepiolite, as well as the excellent conductivity of PAni. In addition, the PAni coating has a pinning effect on sulfur, which influences the consumption of the active mass and enhances the cycling constancy and the coulombic efficiency of the composite material at elevated current rates.

Funder

Department of Science and Technology, Ministry of Science and Technology

University Grants Commission

Ministry of Human Resource Development

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3