Abstract
Polypropylene (PP) is one of the most widely used polymers. In this paper, three types of PPs including random PP, impact PP, and impact PP with high clarity, were prepared through a 75 kg/h pilot-scale Spheripol II process. The three produced PPs were produced by the selection or combination the two loops and gas phase reactor and controlling the comonomer and hydrogen concentrations. The three prepared PPs then were pelleted with the clarified nucleating agent NX 8000 and tested for mechanical, thermal, and optical properties. Their molecular structures and rubber phase size were also investigated by GPC, 13C NMR, temperature rising elution fractionation (TREF), XRD, SEM analysis, etc. The results showed that the random PP (PP-1) and the impact PP with high clarity (PP-3) obtained excellent optical transparency with a haze of 12.5% and 13.5% due to their small rubber phase size (roughly ≤ 100 nm), while the impact PP (PP-2) obtained bad transparency with a haze of 98.8% due to the large rubber phase size (about 1 μm) caused by the poor thermal compatibility with the PP matrix. The rubber phase content and ethylene/propylene sequence distributions of the three PPs varied much and resulted in different impact strengths and stiffness properties. PP-2 had a high impact strength of 14.5 kJ/m2 due to the rubber phase generated in the gas phase reactor. Except for the optical transparency, PP-3 gained stiffness and toughness, with 914 MPa of flexural modulus and 25.1 kJ/m2 of impact strength due to the unique molecular structure of its rubber phase.
Subject
Polymers and Plastics,General Chemistry
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献