Antibacterial Activity of Non-Cytotoxic, Amino Acid-Modified Polycationic Dendrimers against Pseudomonas aeruginosa and Other Non-Fermenting Gram-Negative Bacteria

Author:

Schito Anna Maria,Alfei SilvanaORCID

Abstract

Due to the rapid increase of antimicrobial resistance with ensuring therapeutic failures, the purpose of this study was to identify novel synthetic molecules as alternatives to conventional available, but presently ineffective antibiotics. Variously structured cationic dendrimers previously reported have provided promising outcomes. However, the problem of their cytotoxicity towards eukaryotic cells has not been completely overcome. We have now investigated the antibacterial activities of three not cytotoxic cationic dendrimers (G5Ds: G5H, G5K, and G5HK) against several multidrug-resistant (MDR) clinical strains. All G5Ds displayed remarkable activity against MDR non-fermenting Gram-negative species such as P. aeruginosa, S. maltophilia, and A. baumannii (MICs = 0.5–33.2 µM). In particular, very low MIC values (0.5–2.1 µM) were observed for G5K, which proved to be more active than the potent colistin (2.1 versus 3.19 µM) against P. aeruginosa. Concerning its mechanism of action, in time-killing and turbidimetric studies, G5K displayed a rapid non-lytic bactericidal activity. Considering the absence of cytotoxicity of these new compounds and their potency, comparable or even higher than that provided by the dendrimers previously reported, G5Ds may be proposed as promising novel antibacterial agents capable of overcoming the alarming resistance rates of several nosocomial non-fermenting Gram-negative pathogens.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference44 articles.

1. Prioritization of Pathogens to Guide Discovery, Research and Development of New Antibiotics for Drug Resistant Bacterial Infections, Including Tuberculosis,2017

2. No Time to Wait: Securing the Future from Drug-Resistant Infections. Report to the Secretary-General of the United Nations,2019

3. Antimicrobial peptides of multicellular organisms

4. Antimicrobial Peptides for Therapeutic Applications: A Review

5. A Review of Antimicrobial Peptides and Their Therapeutic Potential as Anti-Infective Drugs

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3