The Effect of Waste Engine Oil and Waste Polyethylene on UV Aging Resistance of Asphalt

Author:

Peng ChaoORCID,Guo Chong,You ZhanpingORCID,Xu Fang,Ma Wenbo,You LingyunORCID,Li Tianjun,Zhou Lizhen,Huang Shifan,Ma Hongchao,Lu Li

Abstract

Waste engine oil (WEO) and waste polyethylene (WPE) are two common wastes, which are easy to pollute the environment. As the primary material in road construction, natural asphalt is a non-renewable energy source and asphalt is vulnerable to ultraviolet (UV) radiation during the service life. It results in degradation of asphalt pavement performance. In this paper, 2 wt % to 8 wt % of WEO and WPE were used to modify asphalts and the UV aging simulation experiment was carried out. The physical parameters of asphalts before the UV aging experiment show that the asphalt containing 4 wt % WPE and 6 wt % WEO mixture (4 wt % WPE + 6 wt % WEO) has similar physical properties with that of the matrix asphalt. Besides, gel permeation chromatography (GPC) verifies that the molecular weight distribution of the asphalt containing 4 wt % WPE + 6 wt % WEO is close to that of the matrix asphalt. The storage stability test shows that 4 wt % WPE + 6 wt % WEO has good compatibility with the matrix asphalt. The functional groups and micro-morphology of asphalts before and after the UV aging experiment were investigated by Fourier transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM). FTIR results display that 4 wt % WPE + 6 wt % WEO can effectively reduce the formation of carbonyl and sulfoxide functional groups. AFM shows that 4 wt % WPE + 6 wt % WEO can also retard the formation of a “bee-like” structure in asphalt after the UV aging experiment. Based on the above results, it can be concluded that WEO and WPE mixture can replace part of asphalt and improve the UV aging resistance of asphalt.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3