Effects of Poly(ethylene-co-glycidyl methacrylate) on the Microstructure, Thermal, Rheological, and Mechanical Properties of Thermotropic Liquid Crystalline Polyester Blends

Author:

Lee Sang Hoon,Jeon Ha-Bin,Hwang Gyu-Hyun,Kwon Young Seung,Lee Ji-Su,Park Gyu-Tae,Kim Soo-Yeon,Kang Ha-Eun,Choi Eun-Ji,Jang Sun-Hwa,Lee Youn Eung,Jeong Young GyuORCID

Abstract

In this study, a series of thermotropic liquid crystalline polyester (TLCP)-based blends containing 1–30 wt% poly(ethylene-co-glycidyl methacrylate) (PEGMA) were fabricated by masterbatch-assisted melt-compounding. The scanning electron microscopy (SEM) images showed a uniformly dispersed microfibrillar structure for the TLCP component in cryogenically-fractured blends, without any phase-separated domains. The FT-IR spectra showed that the carbonyl stretching bands of TLCP/PEGMA blends shifted to higher wavenumbers, suggesting the presence of specific interactions and/or grafting reactions between carboxyl/hydroxyl groups of TLCP and glycidyl methacrylate groups of PEGMA. Accordingly, the melting and crystallization temperatures of the PEGMA component in the blends were greatly lowered compared to the TLCP component. The thermal decomposition peak temperatures of the PEGMA and TLCP components in the blends were characterized as higher than those of neat PEGMA and neat TLCP, respectively. From the rheological data collected at 300 °C, the shear moduli and complex viscosities for the blend with 30 wt% PEGMA were found to be much higher than those of neat PEGMA, which supports the existence of PEGMA-g-TLCP formed during the melt-compounding. The dynamic mechanical thermal analysis (DMA) analyses demonstrated that the storage moduli of the blends decreased slightly with the PEGMA content up to 3 wt%, increased at the PEGMA content of 5 wt%, and decreased again at PEGMA contents above 7 wt%. The maximum storage moduli for the blend with 5 wt% PEGMA are interpreted to be due to the reinforcing effect of PEGMA-g-TLCP copolymers.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3