The Influence of Nanofiller Shape and Nature on the Functional Properties of Waterborne Poly(urethane-urea) Nanocomposite Films

Author:

Špírková MilenaORCID,Hodan Jiří,Konefał Rafał,Machová Luďka,Němeček Pavel,Paruzel Aleksandra

Abstract

A series of waterborne polycarbonate-based poly(urethane-urea) nanocomposite films were prepared and characterized. An isocyanate excess of 30 mol% with respect to the hydroxyl groups was used in the procedure, omitting the chain-extension step of the acetone process in the dispersion preparation. The individual steps of the synthesis of the poly(urethane-urea) matrix were followed by nuclear magnetic resonance (NMR) spectroscopy. The nanofillers (1 wt% in the final nanocomposite) differed in nature and shape. Starch, graphene oxide and nanocellulose were used as representatives of organic nanofillers, while halloysite, montmorillonite, nanosilica and hydroxyapatite were used as representatives of inorganic nanofillers. Moreover, the fillers differed in their shape and average particle size. The films were characterized by a set of methods to obtain the tensile, thermal and surface properties of the nanocomposites as well as the internal arrangement of the nanoparticles in the nanocomposite film. The degradation process was evaluated at 37 °C in a H2O2 + CoCl2 solution.

Funder

Czech Science Foundation

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3