Biofunctional Polymer Coated Au Nanoparticles Prepared via RAFT-Assisted Encapsulating Emulsion Polymerization and Click Chemistry

Author:

Pereira Sónia O.ORCID,Trindade TitoORCID,Barros-Timmons AnaORCID

Abstract

The use of reversible addition-fragmentation chain transfer (RAFT)-assisted encapsulating emulsion polymerization (REEP) has been explored to prepare diverse types of colloidal stable core–shell nanostructures. A major field of application of such nanoparticles is in emergent nanomedicines, which require effective biofunctionalization strategies, in which their response to bioanalytes needs to be firstly assessed. Herein, functional core–shell nanostructures were prepared via REEP and click chemistry. Thus, following the REEP strategy, colloidal gold nanoparticles (Au NPs, d = 15 nm) were coated with a poly(ethylene glycol) methyl ether acrylate (PEGA) macroRAFT agent containing an azide (N3) group to afford N3–macroRAFT@Au NPs. Then, chain extension was carried out from the NPs surface via REEP, at 44 °C under monomer-starved conditions, to yield N3–copolymer@Au NPs–core–shell type structures. Biotin was anchored to N3–copolymer@Au NPs via click chemistry using an alkynated biotin to yield biofunctionalized Au nanostructures. The response of the ensuing biotin–copolymer@Au NPs to avidin was followed by visible spectroscopy, and the copolymer–biotin–avidin interaction was further studied using the Langmuir–Blodgett technique. This research demonstrates that REEP is a promising strategy to prepare robust functional core–shell plasmonic nanostructures for bioapplications. Although the presence of azide moieties requires the use of low polymerization temperature, the overall strategy allows the preparation of tailor-made plasmonic nanostructures for applications of biosensors based on responsive polymer shells, such as pH, temperature, and photoluminescence quenching. Moreover, the interaction of biotin with avidin proved to be time dependent.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3