Quasi-Static Tests of Hybrid Adhesive Bonds Based on Biological Reinforcement in the Form of Eggshell Microparticles

Author:

Kolář ViktorORCID,Müller Miroslav,Mishra RajeshORCID,Rudawska AnnaORCID,Šleger Vladimír,Tichý Martin,Hromasová MonikaORCID,Valášek Petr

Abstract

The paper is focused on the research of the cyclic loading of hybrid adhesive bonds based on eggshell microparticles in polymer composite. The aim of the research was to characterize the behavior of hybrid adhesive bonds with composite adhesive layer in quasi-static tests. An epoxy resin was used as the matrix and microparticles of eggshells were used as the filler. The adhesive bonds were exposed to cyclic loading and their service life and mechanical properties were evaluated. Testing was performed by 1000 cycles at 5–30% (165–989 N) and 5–70% (165–2307 N) of the maximum load of the filler-free bond in the static test. The results of the research show the importance of cyclic loading on the service life and mechanical properties of adhesive bonds. Quasi-static tests demonstrated significant differences between measured intervals of cyclic loading. All adhesive bonds resisted 1000 cycles of the quasi-static test with an interval loading 5–30%. The number of completed quasi-static tests with the interval loading 5–70% was significantly lower. The filler positively influenced the service life of adhesive bonds at a higher amount of quasi-static tests, i.e., the safety of adhesive bonds increased. The filler had a positive effect on adhesive bonds ABF2, where the strength significantly increased up to 20.26% at the loading of 5–30% against adhesive bonds ABF0. A viscoelasticity characteristic (creep) of the adhesive layer occurred at higher values of loading, i.e., between loading 5–70%. The viscoelasticity behavior did not occur at lower values of loading, i.e., between loading 5–30%.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3