Abstract
Exfoliated graphene oxide (GO) was reliably modified with a cetyltrimethylammonium chloride (CTAC) surfactant to greatly improve the dispersity of the GO in a polyacrylonitrile (PAN) polymer precursor solution. Subsequent electrospinning of the mixture readily resulted in the formation of GO–PAN composite nanofibers containing up to 30 wt % of GO as a filler without notable defects. The absence of common electrospinning problems associated with clogging and phase separation indicated the systematic and uniform integration of the GO within the PAN nanofibers beyond the typical limits. After thoroughly examining the formation and maximum loading efficiency of the modified GO in the PAN nanofibers, the resulting composite nanofibers were thermally treated to form membrane-type sheets. The wettability and pore properties of the composite membranes were notably improved with respect to the pristine PAN nanofiber membrane, possibly due to the reinforcing filler effect. In addition, the more GO loaded into the PAN nanofiber membranes, the higher the removal ability of the methylene blue (MB) and methyl red (MR) dyes in the aqueous system. The adsorption kinetics of a mixed dye solution were also monitored to understand how these MB and MR dyes interact differently with the composite nanofiber membranes. The simple surface modification of the fillers greatly facilitated the integration efficiency and improved the ability to control the overall physical properties of the nanofiber-based membranes, which highly impacted the removal performance of various dyes from water.
Funder
National Research Foundation of Korea
Subject
Polymers and Plastics,General Chemistry
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献