Effect of POSS-Modified Montmorillonite on Thermal, Mechanical, and Electrical Properties of Unsaturated Polyester Nanocomposites

Author:

Divakaran Nidhin,B. Kale ManojORCID,Dhamodharan DuraisamiORCID,Mubarak Suhail,Wu Lixin,Wang Jianlei

Abstract

Montmorillonite (MMT) displays excellent cohesion with an unsaturated polyester (UP) matrix to generate a material which exhibits an extensive range of commercial applications. The organic modification of MMT using polyhedral oligomeric silsesquioxanes (POSS) and the effect of POSS-MMT on the thermal, mechanical, and electrical properties of UP are reported here. Transmission electron microscopy (TEM) images were used to characterize the modification of MMT using POSS. Modified MMT (POSS-MMT) was incorporated, at different wt.% (0.5, 1, 3, 5), into UP via in-situ polymerization. The presence of POSS-MMT enhanced the characteristic properties of UP as a consequence of good dispersion in the polymer matrix. Scanning electron microscopy (SEM) images support effective POSS-MMT dispersion leading to tensile strength enhancement of a UP/POSS-MMT nanocomposite (3 wt.% POSS-MMT) by 54.7% as compared to that for unmodified UP. TGA displays a 35 °C improvement of thermal stability (10% mass loss) at 5% POSS-MMT incorporation, while the electrical conductivity is improved by 108 S/m (3 wt.% POSS-MMT) in comparison to that for unmodified UP. The conventional obstacle of UP associated with shrinkage weight loss during curing seems to be moderated with POSS-MMT incorporation (3%) resulting in a 27.8% reduction in shrinkage weight loss. These fabricated nanocomposites expand the versatility of UP as a high-performance material owing to enhancements of properties.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3