Prediction of a Ship’s Operational Parameters Using Artificial Intelligence Techniques

Author:

Alexiou Kiriakos,Pariotis Efthimios G.ORCID,Zannis Theodoros C.ORCID,Leligou Helen C.ORCID

Abstract

The maritime industry is one of the most competitive industries today. However, there is a tendency for the profit margins of shipping companies to reduce due to an increase in operational costs, and it does not seem that this trend will change in the near future. The most important reason for the increase in operating costs relates to the increase in fuel prices. To compensate for the increase in operating costs, shipping companies can either renew their fleet or try to make use of new technologies to optimize the performance of their existing one. The software structure in the maritime industry has changed and is now leaning towards the use of Artificial Intelligence (AI) and, more specifically, Machine Learning (ML) for calculating its operational scenarios as a way to compensate the reduction of profit. While AI is a technology for creating intelligent systems that can simulate human intelligence, ML is a subfield of AI, which enables machines to learn from past data without being explicitly programmed. ML has been used in other industries for increasing both availability and profitability, and it seems that there is also great potential for the maritime industry. In this paper the authors compares the performance of multiple regression algorithms like Artificial Neural Network (ANN), Tree Regressor (TRs), Random Forest Regressor (RFR), K-Nearest Neighbor (kNN), Linear Regression, and AdaBoost, in predicting the output power of the Main Engines (M/E) of an ocean going vessel. These regression algorithms are selected because they are commonly used and are well supported by the main software developers in the area of ML. For this scope, measured values that are collected from the onboard Automated Data Logging & Monitoring (ADLM) system of the vessel for a period of six months have been used. The study shows that ML, with the proper processing of the measured parameters based on fundamental knowledge of naval architecture, can achieve remarkable prediction results. With the use of the proposed method there was a vast reduction in both the computational power needed for calculations, and the maximum absolute error value of prediction.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3