Turbofan Engine Health Assessment Based on Spatial–Temporal Similarity Calculation

Author:

Peng Cheng12ORCID,Hu Xin1,Tang Zhaohui2

Affiliation:

1. School of Computer, Hunan University of Technology, Zhuzhou 412007, China

2. School of Automation, Central South University, Changsha 410083, China

Abstract

Aiming at the problem of the remaining useful life prediction accuracy being too low due to the complex operating conditions of the aviation turbofan engine data set and the original noise of the sensor, a residual useful life prediction method based on spatial–temporal similarity calculation is proposed. The first stage is adaptive sequence matching, which uses the constructed spatial–temporal trajectory sequence to match the sequence to find the optimal matching sample and calculate the similarity between the two spatial–temporal trajectory sequences. In the second stage, the weights of each part are assigned by the two weight allocation algorithms of the weight training module, and then the final similarity is calculated by the similarity calculation formula of the life prediction module, and the final predicted remaining useful life is determined according to the size of the similarity and the corresponding remaining life. Compared with a single model, the proposed method emphasizes the consistency of the test set and the training set, increases the similarity between samples by sequence matching with other spatial–temporal trajectories, and further calculates the final similarity and predicts the remaining use through the weight allocation module and the life prediction module. The experimental results show that compared with other methods, the root mean square error (RMSE) index and the remaining useful life health score (Score) index are reduced by 12.6% and 14.8%, respectively, on the FD004 dataset, and the RMSE index is similar to that in other datasets; the Score index is reduced by about 10%, which improves the prediction accuracy of the remaining useful life and can provide favorable support for the operation and maintenance decision of turbofan engines.

Funder

The Natural Science Foundation of Hunan Province

Key project of Hunan Provincial Education Department

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3