In-Vehicle Data for Predicting Road Conditions and Driving Style Using Machine Learning

Author:

Al-refai GhaithORCID,Elmoaqet HishamORCID,Ryalat MutazORCID

Abstract

Many network protocols such as Controller Area Network (CAN) and Ethernet are used in the automotive industry to allow vehicle modules to communicate efficiently. These networks carry rich data from the different vehicle systems, such as the engine, transmission, brake, etc. This in-vehicle data can be used with machine learning algorithms to predict valuable information about the vehicle and roads. In this work, a low-cost machine learning system that uses in-vehicle data is proposed to solve three categorization problems; road surface conditions, road traffic conditions and driving style. Random forests, decision trees and support vector machine algorithms were evaluated to predict road conditions and driving style from labeled CAN data. These algorithms were used to classify road surface condition as smooth, even or full of holes. They were also used to classify road traffic conditions as low, normal or high, and the driving style was classified as normal or aggressive. Detection results were presented and analyzed. The random forests algorithm showed the highest detection accuracy results with an overall accuracy score between 92% and 95%.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference33 articles.

1. Automotive Embedded Systems Software Reprogramming;Schmidgall;Ph.D. Thesis,2012

2. An overview of Controller Area Network

3. Flexray-a communication network for automotive control systems;Makowitz;Proceedings of the 2006 IEEE International Workshop on Factory Communication Systems,2006

4. Automotive Ethernet;Matheus,2021

5. A tutorial survey on vehicle-to-vehicle communications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3