Complex Research on Amorphous Vanadium Oxide Thin Films Deposited by Gas Impulse Magnetron Sputtering

Author:

Mazur MichałORCID,Lubańska Aneta,Domaradzki Jarosław,Wojcieszak DamianORCID

Abstract

In this work, a complex examination of vanadium oxide thin films prepared by gas impulse magnetron sputtering with various Ar:O2 gas ratios of 2:1 ÷ 8:1 was conducted. X-ray diffraction revealed the amorphous nature of the prepared thin films, and scanning electron microscopy images showed that the thin films were crack-free and homogenous. Optical properties investigations revealed that a higher oxygen content in the Ar:O2 atmosphere during sputtering caused an increase in transparency. The sample prepared with the highest amount of oxygen in the gas mixture during deposition had 51.1% of the average transmission in the visible wavelength range. A decrease in oxygen caused deterioration in the thin film transparency with the lowest value equal to 21.8%. Electrical measurements showed that the prepared thin films had a semiconducting character with either electron or hole conduction type, depending on the sputtering gas composition. A small amount of oxygen in the gas mixture resulted in the deposition of p-type thin films, whereas an increase in the amount of oxygen caused a change to n-type electrical conduction. Resistivity decreased with increasing Ar:O2 ratio. The gas sensing response toward diluted hydrogen was investigated for all the VxOy thin films, but at low operating temperatures, only the p-type thin films exhibited a visible response.

Funder

National Science Center

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3