A Hierarchical Learning Approach for Human Action Recognition

Author:

Lemieux Nicolas,Noumeir RitaORCID

Abstract

In the domain of human action recognition, existing works mainly focus on using RGB, depth, skeleton and infrared data for analysis. While these methods have the benefit of being non-invasive, they can only be used within limited setups, are prone to issues such as occlusion and often need substantial computational resources. In this work, we address human action recognition through inertial sensor signals, which have a vast quantity of practical applications in fields such as sports analysis and human-machine interfaces. For that purpose, we propose a new learning framework built around a 1D-CNN architecture, which we validated by achieving very competitive results on the publicly available UTD-MHAD dataset. Moreover, the proposed method provides some answers to two of the greatest challenges currently faced by action recognition algorithms, which are (1) the recognition of high-level activities and (2) the reduction of their computational cost in order to make them accessible to embedded devices. Finally, this paper also investigates the tractability of the features throughout the proposed framework, both in time and duration, as we believe it could play an important role in future works in order to make the solution more intelligible, hardware-friendly and accurate.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference29 articles.

1. Social intelligence design and human computing;Nishida,2007

2. Internet of Things-from Research and Innovation to Market Deployment;Vermesan,2014

3. Vision based hand gesture recognition for human computer interaction: a survey

4. NTU RGB+D 120: A Large-Scale Benchmark for 3D Human Activity Understanding

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3