Spent Coffee Grounds, Plant Growth Promoting Bacteria, and Medicinal Plant Waste: The Biofertilizing Effect of High-Value Compost

Author:

Dimitrijević Snežana1ORCID,Milić Marija2,Buntić Aneta3ORCID,Dimitrijević-Branković Suzana2ORCID,Filipović Vladimir1ORCID,Popović Vera4ORCID,Salamon Ivan5ORCID

Affiliation:

1. Institute of Medicinal Plants Research “Dr Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia

2. Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia

3. Institute for Soil Science, Teodora Drajzera 7, 11000 Belgrade, Serbia

4. Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000 Novi Sad, Serbia

5. Faculty of Humanities and Natural Sciences, University of Presov, 17th November St., 080 01 Presov, Slovakia

Abstract

Composting of mixed medicinal plant waste was performed with the addition of mixture of plant growth promoting bacteria (PGPB), including Streptomyces sp., Paenybacillus sp., Bacillus sp., and Hymenobacter sp., and portions of spent coffee grounds (SCG). To assess the maturity and quality parameters of the compost, chemical and biological parameters (C/N ratio, loss of organic matter, CO2 production, dehydrogenase activity (DHA), and phytotoxicity) were evaluated during the three months of the composting process. The results revealed that the control sample (without the addition of SCG and PGPB) had evidently lower values of DHA during the entire monitoring period in comparison to other samples, indicating lower microbial activity in the compost mixture. Also, according to the released CO2, the composting process was accelerated in all samples where the SCG and PGPB were added, enabling a reduction in time needed for mixed plant waste to decompose. The germination index (GI) of the tested seeds indicated that the produced compost was acceptable and safe, with regard to all of the evaluated samples. However, at the end of the process the samples contained SCG and PGPB, which caused an increase of more than 50% of the GI in comparison to the control sample, expressing a high phyto-stimulant effect and improving the biofertilization impact.

Funder

Ministry of Science, Technological Development, and Innovation of the Republic of Serbia

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3