Preparing Copper Nanoparticles and Flexible Copper Conductive Sheets

Author:

Hong Gui-Bing,Wang Jia-Fang,Chuang Kai-JenORCID,Cheng Hsiu-Yueh,Chang Kai-Chau,Ma Chih-MingORCID

Abstract

Nanotechnology is used in a wide range of fields, including medicine, cosmetics, and new material development, and is one of the most popular technologies in the field of flexible electronic products. For the present work, the chemical reduction method with environmentally friendly reducing agents was used to synthesize copper nanoparticles (CuNPs) with good dispersibility. The CuNPs were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), and ultraviolet–visible spectrophotometry (UV–vis). After the CuNPs were formed, the solvent, polymers, and additives were added to form copper ink. Finally, the prepared copper inks were applied to flexible polyethylene terephthalate (PET) substrate under low sintering temperature and the effects of sintering time and different concentrations of sintering agent on resistivity were investigated. The results show that the copper nanoparticles synthesized by secondary reduction were smaller, more uniform, and better dispersed than those formed by primary reduction. Ethylene glycol has reducing effects under high temperatures; therefore, the CuNPs formed using the mixed solvent were small and well dispersed. The copper ink was applied on the PET substrate, treated with a formic acid aqueous solution, and sintered at 130 °C for 60 min, and its resistivity was about 1.67 × 10−3 Ω cm. The proposed synthesizing method is expected to have potential applications in the flexible electronic products field.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3