Design of SnO2:Ni,Ir Nanoparticulate Photoelectrodes for Efficient Photoelectrochemical Water Splitting

Author:

Shaban MohamedORCID,Almohammedi Abdullah,Saad Rana,El Sayed Adel M.ORCID

Abstract

Currently, hydrogen generation via photocatalytic water splitting using semiconductors is regarded as a simple environmental solution to energy challenges. This paper discusses the effects of the doping of noble metals, Ir (3.0 at.%) and Ni (1.5–4.5 at.%), on the structure, morphology, optical properties, and photoelectrochemical performance of sol-gel-produced SnO2 thin films. The incorporation of Ir and Ni influences the position of the peaks and the lattice characteristics of the tetragonal polycrystalline SnO2 films. The films have a homogeneous, compact, and crack-free nanoparticulate morphology. As the doping level is increased, the grain size shrinks, and the films have a high proclivity for forming Sn–OH bonds. The optical bandgap of the un-doped film is 3.5 eV, which fluctuates depending on the doping elements and their ratios to 2.7 eV for the 3.0% Ni-doped SnO2:Ir Photoelectrochemical (PEC) electrode. This electrode produces the highest photocurrent density (Jph = 46.38 mA/cm2) and PEC hydrogen production rate (52.22 mmol h−1cm−2 at −1V), with an Incident-Photon-to-Current Efficiency (IPCE% )of 17.43% at 307 nm. The applied bias photon-to-current efficiency (ABPE) of this electrode is 1.038% at −0.839 V, with an offset of 0.391% at 0 V and 307 nm. These are the highest reported values for SnO2-based PEC catalysts. The electrolyte type influences the Jph values of photoelectrodes in the order Jph(HCl) > Jph(NaOH) > Jph(Na2SO4). After 12 runs of reusability at −1 V, the optimized photoelectrode shows high stability and retains about 94.95% of its initial PEC performance, with a corrosion rate of 5.46 nm/year. This research provides a novel doping technique for the development of a highly active SnO2-based photoelectrocatalyst for solar light-driven hydrogen fuel generation.

Funder

the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia through the project number

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3