Abstract
For the displaced harmonic double-well oscillator, the existence of exact polynomial bound states at certain displacements d is revealed. The N-plets of these quasi-exactly solvable (QES) states are constructed in closed form. For non-QES states, the Schrödinger equation can still be considered “non-polynomially exactly solvable” (NES) because the exact left and right parts of the wave function (proportional to confluent hypergeometric function) just have to be matched in the origin.
Subject
Physics and Astronomy (miscellaneous),Astronomy and Astrophysics,Atomic and Molecular Physics, and Optics,Statistical and Nonlinear Physics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献